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Abstract— High velocity penetration of a 3-D rigid sharp impactor into a ductile layered target with
air gaps between the plates is studied using the assumption about the localized projectile-target
interaction. The special property of the penetration phenomenon for conical-nosed impactors is
established, namely, that the ballistic performance of the target is independent on the air gap widths
and on the sequence of the plates in the target. Similar results are also obtained for 3-D non-conical
impactors on the basis of some class of models. These findings are in good agreement with available
experimental results. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The review of investigations on sub-ordnance penetration and perforation of multi-layered
plates can be found in the recent study by Corbett et al. (1996). The important subject of
the theoretical and the experimental investigations in this field is the comparison between
the resistance properties of targets with the same total thickness, depending on the layering,
the sequence of the plates in the target, and the widths of the air gaps between the layers
(Almohandes et al., 1996 ; Ben-Dor et al., 1997b ; Corran et al., 1983 ; Marom and Bodner,
1978 ; Radin and Goldsmith, 1988). Since a rigorous theory is not feasible at present, simple
analytical models are used (Marom and Bodner, 1978 ; Radin and Goldsmith, 1988). These
simple analytical models allow one to establish the qualitative laws which can be used as
the basis for further theoretical and experimental investigations. Similar approach employ-
ing the projectile—target interaction models and the equation of motion of the impactor in
the target rather than the integral balance relation is applied in this study to investigate the
influence of the air gaps and the sequence of the plates in the target on its ballistic resistance.

A high speed normal penetration of a rigid sharp striker into a ductile target with a
finite thickness with air gaps is considered. The basic notations are shown in Fig. 1a. The
coordinate A, the depth of penetration, is defined as the distance between the nose of the
impactor and the upper surface of the target. The coordinate ¢ is associated with the target.
We assume that the shape of the 3-D impactor is such that the total force is directed along
the #-axis. The cylindrical coordinates x, r, 6 are associated with the impactor, and its
surface is described by the following equation:

r=0(x,60), 0<x<L, 0<0<2n )

where L is the length of the impactor. Assume that the target consists of N plates with the
thicknesses by, b,, bs, ..., by where the i-th plate is located between the sections & = £; and
E=¢4b, E,=0,i=1,2,...,N and the total thickness of the target is b = éy+by. The
part of the lateral surface of the impactor between the cross-sections x = x; and x = x, (see
Fig. 1a) interacts with some layers of the target or is in contact with some air gaps where
(see Fig. 1b)
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Fig. 1a, b. Coordinates and notations.
0 if 0<h<b h if 0<h<L
x,(h) = . , Xa{h) = . @)
h—b if b<h<b+L L if b<h<b+L
The equation of motion of the impactor M d*4/ds* = — D can be rewritten as follows:
e = —p 3
v T €)

where the instantaneous velocity of the impactor v is considered to be a function of 1, M is
the mass of the impactor, and D is the resistance force. We consider the range of impact
velocities v, when the projectile perforates the target. The position of the striker at the
moment of perforation is # = b+ L and its residual velocity is v.. The ballistic limit velocity
v, is defined as the impact velocity of the impactor required to emerge from the target with
a zero residual velocity.

2. 3-D CONICAL IMPACTORS

In this section we assume that the material of all the layers of the target is the same
and that the impactor—target interaction at a given location at the surface of the impactor
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which is in contact with the target can be represented using localized interaction model
(Ben-Dor et al., 1997a, 1998 ; Bunimovich and Dubinsky, 1995), i.e.,

dF =(Q,n° +Q. %) dS (4)
where
0 0
R PN SN Y} 5)
1 —u?

In eqns (4) and (5), dF is the force acting at the surface element dS of the impactor, n® and
1% are the unit normal and tangent vectors at a given location on the impactor’s surface,
respectively, v is the unit vector of the impactor’s velocity, f is the angle between n°
and —v°. The non-negative functions Q, = Q.(a, a,,...;4,0) and Q, = Q.(a;, 4>, ...;u,v)
determine the specific model (Q, = Q, = 0 if u < 0). The parameters a, depend on the
properties of the material of the target, hereafter they are not listed, in order to simplify
notations, in the list of arguments. Equations (4) and (5) comprise most if not all of the
known phenomenological models for homogenous targets. Their description and analysis
can be found, e.g., in the studies of Backman and Goldsmith (1978), Goldsmith (1960),
Landgrov and Sarkisyan (1984), Recht (1990), Vitman and Stepanov (1959). In the present
study the detailed specification of the model is not required.

The total force F is determined by integrating the local force over the impactor-target
contact surface ¢ taking into account the air gaps. Using formulae of differential geometry

u=A/B, A=®0, B=/® (@ +1)+®;, dS=Bdxdo, (6)

where the subscript denotes a derivative with respect to the corresponding variable, the
expression for the drag force D can be written as

D=F-(—v") = j J uQy(u, ) dS = j = r 8(h—x)Q (4, v) A dx do (7
4 x, (k) JO

where

Q,(u,v) = Q,(u,v) +u ' /1 —12Q.(u,v) (8)

and 8(&) = 1if & < E < &+b;for 1 <i< Nand ¢ = 0 otherwise.
For a 3-D conical impactor, ®(x,0) = xn(f) where the function %#() determines its
cross-sectional contor and #(0) = #(2n). Then, after substituting the expressions

NMe

u=u(f) = ————=, A=2x ©)
NUR T
to eqn (7), eqn (3) can be written as follows:
dv x2 (M)
Myv— = —w®) xé(h—x)dx (10)
dh )

where
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w(v) = rn 12 Q (1 (6),v) dO = 0. an

0

The solution of eqn (10) with the initial condition v(0) = v, which corresponds to the
beginning of the motion of the impactor with an impact velocity v, reads

h
o) —o(0) =12 (2

where the increasing function ¢(v) and the function x(h) are determined by the following
formulae :

o) = J;—?i 2 = Jh dﬁr(m x6(h—x) dx. (13)

2
o w(2) 0 x ()

Equation (12) yields formulae for the residual velocity v, = v(b+ L) and the ballistic limit
velocity v, :

o) — @) =a, ve=0 '(a) (14)
where
a= ﬁ%{gﬂ (15

Since (see Fig. 1b)

b+L  (xy(h) ~ L x+b -
x(b+1L) =f dhf xé(h—x)dxzj xdxj S(h—x)dh

0 x, () 0 x

we find that

L y
a= m‘bz, b): = _Zl b,‘. (17)

Formally, eqn (17) shows that the residual velocity for a given impact velocity and the
ballistic limit velocity are the same for all targets with the same total thickness 5. However,
our model does not account for the difference in the resistance properties of a monolithic
target and a target consisting of several plates in-contact with the same total thickness
which is found in the experiments (e.g., Almohandes e al., 1996 ; Marom and Bodner,
1978 ; Radin and Goldsmith, 1988). In this study we consider targets which consist of some
given set of plates and analyze only the effect of the air gap’s widths and of the sequence
of the plates in the target on its ballistic properties. Thus, the above results can be interpreted
as an independence of these properties on air gaps widths and on the sequence of the plates.

3. NON-CONICAL 3-D IMPACTORS

We assume now that the resistance force dD; acting on the impactor element inside the
i-th plate between sections x and x +dx can be represented as follows :
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dD, = G(h—E, o) dx, & <h—x<&+b, (18)

where G; and w are the functions determining the impactor—plate interaction model, the
first function depends on the shape of the impactor and the properties of the material of
the plate as well. Equation (18) can be written also in the following generally accepted
form:

dD, = Gh—E, M) ds, G =0 (19)

2n
J P, do

0

where ds is the elementary “presented area’ (e.g., Recht, 1990), i.e., the projection of the
contact surface between sections x and x + dx on a plane normal to the impactor’s velocity.
Unlike the model given by eqns (4) and (5), the model of eqn (18) does not specify the
character of the interaction of the impactor with the target at every point of its contact. It
allows to account for the differences in the models used for different plates and specifies the
relation between the resistance force an the velocity of the impactor.

In the following we present several examples of the models used for a monolithic target
and which can be reduced to the model determined by eqn (18), or, equivalently, to the
model given by eqn (19).

The first example is the set of phenomenological models (Backman and Goldsmith,
1978 ; Goldsmith, 1960) with G’ = 1, () = a®v® +aVv+a® where the parameters a©,
a", a® depend on the shape of the impactor and the properties of the material of the target
which are assumed to be the same for all the plates. If the velocity of the impactor is low,
the model with G, = a® and w(v) = v* is used. As the second example, we consider the
model based on the relation F = kv” between the penetration resistance F and the impactor’s
velocity v which was suggested and studied by Mileiko and Sarkisyan (1980}, Mileiko et al.
(1994), Muzychenko and Postnov (1984) where the parameter p depends, primarily, on the
properties of the target material and the parameter & depends also on the shape of the
impactor. The latter mode! yields generally wrong non-zero values of resistance at the
beginning and at the end of the penetration with a non-zero velocity. Therefore, it is more
appropriate to use it for the cross-section of the impactor in the form given by eqn (18)
with o(v) ="

The equation of motion of the impactor reads:

dU X, (h)
My=-—= —a(@) J G(h, x)0(h—x) dx (20)
dh xl(h)

where G = G(h—¢&,x) if {;, < h—x < &,+b, and G =0 otherwise. The solution of this
equation with the initial condition v(0) = v, is given by eqn (12) where the function ¢ is
determined by eqn (13), whereas

1 (h) = r dh r(m G(h, X)8(h—x) dx. 1)

0 x (k)

After transformations we obtain eqns (14) and (15) where

x(b+L) = JL dx ij(ﬁ, x)0(h—x)dh = JL dx i r'+ G,(h—¢&,x)dé

0 x 0 i=1J¢,

i

i=1 Jo 0

- i J “dx J "Gwxdn (22
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i.e., the residual velocity for a given impact velocity and the ballistic limit velocity are
independent of the air gap’s widths and of the sequence of the plates in the target.

4. DISCUSSION

Experimental data on ballistic penetration of conical impactors into ductile targets
with air gaps are quite scarce. In a study by Radin and Goldsmith (1988), the impact
response of a hard-stee] 60-grad conical-nosed projectile on a target with multi-layered
plates of soft aluminum was investigated. Two experiments are relevant to our study. In
the first experiment, two plates with thicknesses 1.6 mm, both adjacent and space, are
considered, and the ballistic limit velocities of 93.2 m/s and 90.6 m/s were obtained,
respectively. In the second experiment, the plates with thicknesses 3.2 mm are used; the
ballistic limit velocities 160.4 m/s and 153.4 m/s were obtained, respectively. The values of
ballistic limits for adjacent and spaced plates are close ; some increase in the ballistic limit
of plates in contact therewith can be explained by friction between the layers (Corran et
al., 1983) which is not taken into account in the present models.

Consider now the non-conical projectiles. It is known (Recht, 1990) that a ballistic
resistance of a sharp impactor is weakly affected by the shape of its longitudinal contor at
high impact velocities. It was even found (Zukas, 1982) that ogive-shaped noses could be
replaced in the calculations by equivalent conical ones. Therefore, one would have expected
that the above proved assertion for cones is approximately valid with the same accuracy
for non-conical sharp impactors, despite the fact that it is determined in Section 2 using less
reliable models. This conclusion is supported by the experimental results by Almohandes et
al. (1996) where the standard 7.62 mm bullet with 8 mm core diameter and a slenderness
ratio of 4.2 mm was used. The total thickness of the mild steel plates was 8 mm. We divide
the results of the experiments into several groups (see Table 1). In every group, the target
consists of some set of the plates which are arranged in different experiments in different
sequences, both adjacent and space. We use the notation of Almohandes et al. (1996) : 25—
6A-68S for the targets that comprises, sequentially, of 2 mm steel plate, 6 mm air gap, and
6 mm steel plate; the notation 4*(15-6A) denotes 1S-6A—1S-6A-1S-6A-15-6A, etc. In
Table 1, the average value #, and the deviations ¢ are calculated using the following
formulas:

(23)

where m is the number of variants of the target in the group, v{" is the residual velocity in

Table 1. Effect of the target configuration on the residual velocity (on the basis of experiments by Almohandes,

1996)

Target Impact velocity (m/s)
configurations Parameter 706.0 754.5 775.4 804.5 862.2
28-68S, 65-28, Average 7,, m/s 475.0 520.2 548.1 613.0 657.9
2S-6A-68S, Average deviation €, % 0.5 0.7 0.5 0.4 0.7
65-6A-2S

4548, Average 7, m/s 487.2 564.7 534.2 643.7 668.1
4S-6A—4S Average deviation €, % 0.2 0.2 0.4 0.1 0.1
1S-6A-1S—6A-68S, Average 7, m/s 479.8 524.2 551.0 641.0 665.7
6S—-6A-1S—-6A-1S Average deviation ¢, % 0.9 2.7 2.6 0.5 0.3
2S-6A-2S-6A—4S, Average 7, m/s 493.8 540.5 579.3 649.2 676.6
4S-6A-25-6A-2S Average deviation ¢, % 0.2 0.3 0.1 0.9 0.4
4*¥(1S-6A)-4S, Average 7, m/s 523.1 563.2 610.9 657.0 679.6
45-4*(6A-18) Average deviation &, % 0.8 1.8 0.4 0.5 . 0.6
All targets Average 7, m/s 489.0 533.7 568.7 636.1 667.6

Average deviation ¢, % 3.5 32 4.2 2.7 1.4
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the experiment for a given variant of target configuration and a given impact velocity. The
group “all target” includes all the considered variants of the target configuration. Table 1
shows that the residual velocities for different targets of every group are very close; the
difference becomes negligible if the plates in contact are not included (Almohandes e al.,
1996). In the group “all targets”, the scatter in the residual velocities is more noticeable.

5. CONCLUDING REMARKS

The main result of our investigation is that the ballistic performance of the ductile
layered target penetrated by 3-D rigid, sharp, conical-nosed impactors is independent of
the air gap widths between the layers and on the sequence of the plates in the target. The
latter results is proved using a quite general model that describes the projectile-target
interaction. Similar results have also been obtained for 3-D non-conical impactors using
some class of models for a projectile-target interaction. The obtained results are found to
be in a good agreement with available experimental data.
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